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 The Holy Grail of Arithmetic: Bridging Provability and Computability

See also this update.

(Notations, non-standard concepts, and definitions used commonly in these investigations are
detailed in this post.)

Peter Wegner and Dina Goldin

In a short opinion paper, `Computation Beyond Turing Machines‘, Computer Scientists Peter
Wegner and Dina Goldin (Wg03) advanced the thesis that:

`A paradigm shift is necessary in our notion of computational problem solving, so it can
provide a complete model for the services of today’s computing systems and software
agents.’

We note that Wegner and Goldin’s arguments, in support of their thesis, seem to reflect an
extraordinarily eclectic view of mathematics, combining both an implicit acceptance of, and
implicit frustration at, the standard interpretations and dogmas of classical mathematical
theory:

(i) `… Turing machines are inappropriate as a universal foundation for computational
problem solving, and … computer science is a fundamentally non-mathematical
discipline.’

(ii) `(Turing’s) 1936 paper … proved that mathematics could not be completely modeled
by computers.’

(iii) `… the Church-Turing Thesis … equated logic, lambda calculus, Turing machines,
and algorithmic computing as equivalent mechanisms of problem solving.’

(iv) `Turing implied in his 1936 paper that Turing machines … could not provide a model
for all forms of mathematics.’

(v) `… Gödel had shown in 1931 that logic cannot model mathematics … and Turing
showed that neither logic nor algorithms can completely model computing and human
thought.’

These remarks vividly illustrate the dilemma with which not only Theoretical Computer
Sciences, but all applied sciences that depend on mathematics—for providing a verifiable
language to express their observations precisely—are faced:

Query: Are formal classical theories essentially unable to adequately express the extent
and range of human cognition, or does the problem lie in the way formal theories are
classically interpreted at the moment?

The former addresses the question of whether there are absolute limits on our capacity to
express human cognition unambiguously; the latter, whether there are only temporal limits—
not necessarily absolute—to the capacity of classical interpretations to communicate
unambiguously that which we intended to capture within our formal expression.

Prima facie, applied science continues, perforce, to interpret mathematical concepts
Platonically, whilst waiting for mathematics to provide suitable, and hopefully reliable, answers
as to how best it may faithfully express its observations verifiably.

Lance Fortnow

This dilemma is also reflected in Computer Scientist Lance Fortnow’s on-line rebuttal of
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Wegner and Goldin’s thesis, and of their reasoning.

Thus Fortnow divides his faith between the standard interpretations of classical mathematics
(and, possibly, the standard set-theoretical models of formal systems such as standard Peano
Arithmetic), and the classical computational theory of Turing machines.

He relies on the former to provide all the proofs that matter:

`Not every mathematical statement has a logical proof, but logic does capture everything
we can prove in mathematics, which is really what matters’;

and, on the latter to take care of all essential, non-provable, truth:

`… what we can compute is what computer science is all about’.

Can faith alone suffice?

However, as we shall argue in a subsequent post, Fortnow’s faith in a classical Church-Turing
Thesis that ensures:

`… Turing machines capture everything we can compute’,

may be as misplaced as his faith in the infallibility of standard interpretations of classical
mathematics.

The reason: There are, prima facie, reasonably strong arguments for a Kuhnian (Ku62)
paradigm shift; not, as Wegner and Goldin believe, in the notion of computational problem
solving, but in the standard interpretations of classical mathematical concepts.

However, Wegner and Goldin could be right in arguing that the direction of such a shift must
be towards the incorporation of non-algorithmic effective methods into classical mathematical
theory (as detailed in the Birmingham paper); presuming, from the following remarks, that this
is, indeed, what `external interactions’ are assumed to provide beyond classical Turing-
computability:

(vi) `… that Turing machine models could completely describe all forms of computation
… contradicted Turing’s assertion that Turing machines could only formalize algorithmic
problem solving … and became a dogmatic principle of the theory of computation’.

(vii) `… interaction between the program and the world (environment) that takes place
during the computation plays a key role that cannot be replaced by any set of inputs
determined prior to the computation’.

(viii) `… a theory of concurrency and interaction requires a new conceptual framework,
not just a refinement of what we find natural for sequential [algorithmic] computing’.

(ix) `… the assumption that all of computation can be algorithmically specified is still
widely accepted’.

A widespread notion of particular interest, which seems to be recurrently implicit in Wegner
and Goldin’s assertions too, is that mathematics is a dispensable tool of science, rather than
its indispensable mother tongue.

Elliott Mendelson

However, the roots of such beliefs may also lie in ambiguities, in the classical definitions of
foundational elements, that allow the introduction of non-constructive—hence non-verifiable,
non-computational, ambiguous, and essentially Platonic—elements into the standard
interpretations of classical mathematics.

For instance, in a 1990 philosophical reflection, Elliott Mendelson’s following remarks (in
Me90; reproduced from Selmer Bringsjord (Br93)), implicitly imply that classical definitions of
various foundational elements can be argued as being either ambiguous, or non-constructive,
or both:

`Here is the main conclusion I wish to draw: it is completely unwarranted to say that CT
is unprovable just because it states an equivalence between a vague, imprecise notion
(effectively computable function) and a precise mathematical notion (partial-recursive
function). … The concepts and assumptions that support the notion of partial-recursive
function are, in an essential way, no less vague and imprecise than the notion of
effectively computable function; the former are just more familiar and are part of a
respectable theory with connections to other parts of logic and mathematics. (The notion
of effectively computable function could have been incorporated into an axiomatic
presentation of classical mathematics, but the acceptance of CT made this
unnecessary.) … Functions are defined in terms of sets, but the concept of set is no
clearer than that of function and a foundation of mathematics can be based on a theory
using function as primitive notion instead of set. Tarski’s definition of truth is formulated
in set-theoretic terms, but the notion of set is no clearer than that of truth. The model-
theoretic definition of logical validity is based ultimately on set theory, the foundations of
which are no clearer than our intuitive understanding of logical validity. … The notion of
Turing-computable function is no clearer than, nor more mathematically useful
(foundationally speaking) than, the notion of an effectively computable function.’

Consequently, standard interpretations of classical theory may, inadvertently, be weakening a
desirable perception—of mathematics as the lingua franca of scientific expression—by
ignoring the possibility that, since mathematics is, indeed, indisputably accepted as the
language that most effectively expresses and communicates intuitive truth, the chasm
between formal truth and provability must, of necessity, be bridgeable.

Cristian Calude, Elena Calude and Solomon Marcus

The belief in the existence of such a bridge is occasionally implicit in interpretations of
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computational theory.

For instance, in an arXived paper Passages of Proof, Computer Scientists Cristian Calude,
Elena Calude and Solomon Marcus remark that:

“Classically, there are two equivalent ways to look at the mathematical notion of proof:
logical, as a finite sequence of sentences strictly obeying some axioms and inference
rules, and computational, as a specific type of computation. Indeed, from a proof given
as a sequence of sentences one can easily construct a Turing machine producing that
sequence as the result of some finite computation and, conversely, given a machine
computing a proof we can just print all sentences produced during the computation and
arrange them into a sequence.”

In other words, the authors seem to hold that Turing-computability of a `proof’, in the case of
an arithmetical proposition, is equivalent to provability of its representation in PA.

Wilfrid Sieg

We now attempt to build such a bridge formally, which is essentially one between the
arithmetical ‘Decidability and Calculability’ described by Philosopher Wilfrid Sieg in his in-
depth and wide-ranging survey ‘On Comptability‘, in which he addresses Gödel’s lifelong
belief that an iff bridge between the two concepts is ‘impossible’ for ‘the whole calculus of
predicates’ (Wi08, p.602).

 Bridging provability and computability: The foundations

In the paper titled “Evidence-Based Interpretations of ” that was presented to the
Symposium on Computational Philosophy at the AISB/IACAP World Congress 2012-Alan
Turing 2012, held from  to  July 2012 at the University of Birmingham, UK (reproduced
in this post) we have defined what it means for a number-theoretic function to be:

(i) Algorithmically verifiable;

(ii) Algorithmically computable.

We have shown there that:

(i) The standard interpretation  of the first order Peano Arithmetic PA
is finitarily sound if, and only if, Aristotle’s particularisation holds over ; and the latter is
the case if, and only if, PA is -consistent.

(ii) We can define a finitarily sound algorithmic interpretation  of PA
over the domain  where, if  is an atomic formula  of PA, then
the sequence of natural numbers  satisfies  if, and only if 

 is algorithmically computable under , but we do
not presume that Aristotle’s particularisation is valid over .

(iii) The axioms of PA are always true under the finitary interpretation 
, and the rules of inference of PA preserve the properties of

satisfaction/truth under .

We concluded that:

Theorem 1: The interpretation  of PA is finitarily sound.

Theorem 2: PA is consistent.

 Extending Buss’ Bounded Arithmetic

One of the more significant consequences of the Birmingham paper is that we can extend the
iff bridge between the domain of provability and that of computability envisaged under Buss’
Bounded Arithmetic by showing that an arithmetical formula  is PA-provable if, and only if, 

 interprets as true under an algorithmic interpretation of PA.

 A Provability Theorem for PA

We first show that PA can have no non-standard model (for a distinctly different proof of this
convention-challenging thesis see this post and this paper), since it is `algorithmically’
complete in the sense that:

Theorem 3: (Provability Theorem for PA) A PA formula  is PA-provable if, and
only if,  is algorithmically computable as always true in .

Proof: We have by definition that  interprets as true under the interpretation 
 if, and only if,  is algorithmically computable as always true

in .

Since  is finitarily sound, it defines a finitary model of PA over —
say —such that:

If  is PA-provable, then  is algorithmically computable as always
true in ;

If  is PA-provable, then it is not the case that  is algorithmically
computable as always true in .

Now, we cannot have that both  and  are PA-unprovable for
some PA formula , as this would yield the contradiction:

(i) There is a finitary model—say —of PA+  in which  is
algorithmically computable as always true in .
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(ii) There is a finitary model—say —of PA+  in which it is not the
case that  is algorithmically computable as always true in 

The lemma follows. 

 The holy grail of arithmetic

We thus have that:

Corollary 1: PA is categorical finitarily.

Now we note that:

Lemma 2: If PA has a sound interpretation  over , then there is a PA
formula  which is algorithmically verifiable as always true over  under 

 even though  is not PA-provable.

Proof In his seminal 1931 paper on formally undecidable arithmetical propositions, Kurt
Gödel has shown how to construct an arithmetical formula with a single variable—say 

 [1]—such that  is not PA-provable [2], but  is instantiationally PA-
provable for any given PA numeral . Hence, for any given numeral , the PA formula 

 must hold for some . The lemma follows. 

By the argument in Theorem 3 it follows that:

Corollary 2: The PA formula  defined in Lemma 2 is PA-provable.

Corollary 3: Under any sound interpretation of PA, Gödel’s  interprets as an
algorithmically verifiable, but not algorithmically computable, tautology over .

Proof Gödel has shown that  [3] interprets as an algorithmically verifiable tautology
[4]. By Corollary 2  is not algorithmically computable as always true in . 

Corollary 4: PA is not -consistent. [5]

Proof Gödel has shown that if PA is consistent, then  is PA-provable for any given

PA numeral  [6]. By Corollary 2 and the definition of -consistency, if PA is consistent
then it is not -consistent. 

Corollary 5: The standard interpretation  of PA is not finitarily sound,

and does not yield a finitary model of PA [7].

Proof If PA is consistent but not -consistent, then Aristotle’s particularisation does not
hold over . Since the `standard’, interpretation of PA appeals to Aristotle’s
particularisation, the lemma follows. 

Since formal quantification is currently interpreted in classical logic [8] so as to admit Aristotle’s

particularisation over  as axiomatic [9], the above suggests that we may need to review

number-theoretic arguments [10] that appeal unrestrictedly to classical Aristotlean logic.

 The Provability Theorem for PA and Bounded Arithmetic

In a 1997 paper [11], Samuel R. Buss considered Bounded Arithmetics obtained by:

(a) limiting the applicability of the Induction Axiom Schema in PA only to functions with
quantifiers bounded by an unspecified natural number bound ;

(b) `weakening’ the statement of the axiom with the aim of differentiating between
effective computability over the sequence of natural numbers, and feasible `polynomial-

time’ computability over a bounded sequence of the natural numbers [12].

Presumably Buss’ intent—as expressed below—is to build an iff bridge between provability in
a Bounded Arithmetic and Computability so that a  formula, say , is provable in
the Bounded Arithmetic if, and only if, there is an algorithm that, for any given numeral ,
decides the  formula  as `true’:

If  is provable, then there should be an algorithm to find  as a

function of  [13].

Since we have proven such a Provability Theorem for PA in the previous section, the first
question arises:

 Does the introduction of bounded quantifiers yield any computational advantage?

Now, one difference [14] between a Bounded Arithmetic and PA is that we can presume in the
Bounded Arithmetic that, from a proof of , we may always conclude that there is
some numeral  such that  is provable in the arithmetic; however, this is not a
finitarily sound conclusion in PA.

Reason: Since  is simply a shorthand for , such a presumption
implies that Aristotle’s particularisation holds over the natural numbers under any finitarily
sound interpretation of PA.

To see that (as Brouwer steadfastly held) this may not always be the case, interpret 

 as [15]:

There is an algorithm that decides  as `true’ for any given numeral .

In such case, if  is provable in PA, then we can only conclude that:

#
#fn1
#fn2
#fn3
#fn4
#fn5
#fn6
#
#fn7
#fn8
#fn9
#fn10
#fn11
#fn12
#fn13
#fn14
#
#
#fn15


There is an algorithm that, for any given numeral , decides that it is not the case that
there is an algorithm that, for any given numeral , decides  as `true’.

We cannot, however, conclude—as we can in a Bounded Arithmetic—that:

There is an algorithm that, for any given numeral , decides that there is an algorithm
that, for some numeral , decides  as `true’.

Reason:  may be a Halting-type formula for some numeral .

This could be the case if  were PA-unprovable, but  PA-
provable for any given numeral .

Presumably it is the belief that any finitarily sound interpretation of PA requires Aristotle’s
particularisation to hold in , and the recognition that the latter does not admit linking
provability to computability in PA, which has led to considering the effect of bounding
quantification in PA.

However, as we have seen in the preceding sections, we are able to link provability to
computability through the Provability Theorem for PA by recognising precisely that, to the
contrary, any interpretation of PA which requires Aristotle’s particularisation to hold in 
cannot be finitarily sound!

The postulation of an unspecified bound in a Bounded Arithmetic in order to arrive at a
provability-computability link thus appears dispensible.

The question then arises:

 Does `weakening’ the PA Induction Axiom Schema yield any computational
advantage?

Now, Buss considers a bounded arithmetic  which is, essentially, PA with the following

`weakened’ Induction Axiom Schema, PIND [16]:

However, PIND can be expressed in first-order Peano Arithmetic PA as follows:

.

Moreover, the above is a particular case of PIND( ):

 
.

Now we have the PA theorem:

It follows that the following is also a PA theorem:

 

In other words, for any numeral , PIND( ) is equivalent in PA to the standard Induction
Axiom of PA!

Thus, the Provability Theorem for PA suggests that all arguments and conclusions of a
Bounded Arithmetic can be reflected in PA without any loss of generality.
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Notes

Return to 1: Gödel refers to this formula only by its Gödel number  (Go31, p.25(12)).

Return to 2: Gödel’s immediate aim in Go31 was to show that  is not P-provable;
by Generalisation it follows, however, that  is also not P-provable.

Return to 3: Gödel refers to this formula only by its Gödel number  (Go31, p.25, eqn.12).

Return to 4: Go31, p.26(2): “  holds”.

Return to 5: This conclusion is contrary to accepted dogma. See, for instance, Davis’ remarks
in Da82, p.129(iii) that:

“… there is no equivocation. Either an adequate arithmetical logic is -inconsistent (in which
case it is possible to prove false statements within it) or it has an unsolvable decision problem
and is subject to the limitations of Gödel’s incompleteness theorem”.

Return to 6: Go31, p.26(2).

Return to 7: I note that finitists of all hues—ranging from Brouwer Br08 to Alexander Yessenin-
Volpin He04—have persistently questioned the finitary soundness of the `standard’
interpretation .

Return to 8: See Hi25, p.382; HA28, p.48; Be59, pp.178 \& 218.

Return to 9: In the sense of being intuitively obvious. See, for instance, Da82, p.xxiv; Rg87,
p.308 (1)-(4); EC89, p.174 (4); BBJ03, p.102.

Return to 10: For instance Rosser’s construction of an undecidable arithmetical proposition in
PA (see Ro36)—which does not explicitly assume that PA is -consistent—implicitly
presumes that Aristotle’s particularisation holds over .

Return to 11: Bu97.

Return to 12: See also Pa71.

Return to 13: See Bu97.

Return to 14: We suspect the only one.

Return to 15: We have seen in the earlier sections that such an interpretation is finitarily
sound.

Return to 16: Where  denotes the largest natural number lower bound of the rational .
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