Rumen Microbiology

B.A. Dehority


This is the first complete book on rumen microbiology since Hungate's *The Rumen and its Microbes* (1966). This is an exceptionally well written and well arranged book that will be of great value to rumen and anaerobic microbiologists alike. The format of the book is different to that used by Hungate, focusing on the microbiology. The opening chapters describe the evolution and physiology of the ruminant stomach, which provides a sound understanding of the digestive system of the ruminant. The protozoa, bacteria and fungi are segregated into their own chapters and are well described. The bacteria are conveniently grouped into those that ferment cellulose, hemicellulose, pectin and starch, as well as the facultative anaerobes. The appendix contains a very useful set of possible experiments for students of rumen microbiology. Several notable omissions concerning the detection of oxygen in rumen fluid and the respiration of rumen protozoa are apparent. It would be useful to have at least one glossy page of photographs representing the major groups of protozoa.

Nigel Yarlett, Haskins Laboratories, Pace University, New York


Society for General Microbiology, Marlborough House, Basingstoke Road, Spencers Wood, Reading RG7 1AG, UK.

Registered as a Charity in England and Wales 264917. A Charity registered in Scotland SC039250.


Copyright © 2008 SGM

Start studying Rumen Microbiology and Fermentation. Learn vocabulary, terms and more with flashcards, games and other study tools.

What characteristics of the rumen environment make it favorable for fermentation?
- constant supply of nutrients
- end products removed
- undigested nutrients removed
- pH held constant (6.6-6.8)
- constant temperature (39°C)
- anaerobic environment
- constant mixing
- protection from host immune system.

Why is there so much diversity of microbes in the rumen?
Scaling Rumen Microbiology Science.

"JGI is a world leader in conducting, enabling, and democratizing sequence-based research-and one of the few places that does science at this large scale. Beyond the sequence generation, data processing, and big compute resources, we bring significant experience and expertise to help bridge the gap from sequence to biology," said Rekha Seshadri, JGI computational biologist and co-first author of the paper. Rumen Microbiology 101.

Penn State University. November 12, 2014 09:47 AM.

Print.

The objective of feeding dairy cattle nutritionally balanced diets is to provide a rumen environment that maximizes microbial production and growth. When designing rations for ruminants, the needs of both the animal and the rumen microorganisms must be considered. In order to optimize animal performance, compromises in feeding the microbes or the cow may occur. Ruminants are herbivorous mammals that are able to acquire nutrients from plant-based food by fermenting it in a specialized stomach prior to digestion, principally through microbial actions. The process, which takes place in the front part of the digestive system and therefore is called foregut fermentation, typically requires the fermented ingesta (known as cud) to be regurgitated and chewed again. The process of rechewing the cud to further break down plant matter and stimulate digestion is called View Rumen Microbiology Research Papers on Academia.edu for free.

Recent papers in Rumen Microbiology.


RESUMEN.