A Guide To
Quantitative Risk Assessment
for Offshore Installations

Principal Author

John Spouge
DNV Technica

Disclaimer

Every reasonable effort has been made to ensure that this Guide is based on
the best knowledge available up to the time of finalising the text. However, no responsibility
of any kind for any injury, delay, loss or damage, whatsoever, resulting from the use
of the Guide can be accepted by CMPT, the sponsors or others involved in its publication.

Publication 99/100a
© CMPT 1999
ISBN 1 870553 365
FOREWORD

The need for guidance on risk assessment was identified as an industry requirement as a result of regulations, initially promulgated in the UK and Norway, requiring quantitative risk assessments of new and existing installations as part of their safety case. At that time, no standard reference works existed, most expertise was held by individual operators and consultants and little reached the public domain.

The project leading to this Guide was initiated by MTD Ltd, and is now published by The Centre for Marine and Petroleum Technology (CMPT), in order to assist engineers involved in commissioning, performing and evaluating risk assessments specifically for the offshore industry.

The Guide was prepared under contract by Mr J R Spouge of DNV Technica (now part of Det Norske Veritas) as the primary contractor, with significant input from AEA Technology and Dovre Safetec. It was sponsored by 8 organisations (four oil operators and four regulatory bodies) and was managed for MTD, and latterly CMPT, by Mr R W Barrett.

Project Sponsors

Amoco (U.K.) Exploration Company
Chevron UK Ltd
Exxon Production Research Company
The Health and Safety Executive
Minerals Management Service (USA)
Mobil Technology Company
National Energy Board (Canada)
Norwegian Petroleum Directorate

Steering Group

A Steering Group comprising representatives of participants, MTD Ltd and CMPT, and the Technical Services Contractors provided the forum for both verbal and written discussion of the content of the Guide during its preparation. During the period of the project, the following individuals served on the Steering Group which was chaired by Mr W D Howells (Chevron UK Ltd) and Mr R W Barrett:

T Al-Hassan Health and Safety Executive
RW Barrett Centre for Marine and Petroleum Technology
DJ Bridge Health and Safety Executive
FM Davies Marine Technology Support Unit
K Gulati Mobil Technology Company
S Harding Exxon Production Research Company
WD Howells Chevron UK Ltd
KL Nilsson Norwegian Petroleum Directorate
ME Rodgers Exxon Production Research Company
RJ Smith National Energy Board (Canada)
JK Smith Amoco (U.K.) Exploration Company
CE Smith Minerals Management Service (USA)
JR Spouge DNV Technica
A Wang Exxon Production Research Company
The preparation of this Guide was undertaken by the following organisations and the individuals who worked on its various elements are listed below:

- AEA Technology
 - KG Kinsella
 - CG Morgan
- DNV Technica
 - DJ Bridge
 - JR Spouge
 - EJ Smith
- Dovre Safetec Ltd
 - S Haugen
 - L Paterson
 - F Vollen
- Electrowatt Engineering Services UK Ltd
 - S Hall
 - AJ Skudder
- Four Elements Ltd
 - S Harris
 - B Morgan

Acknowledgement

A further acknowledgement is due to the Health and Safety Executive’s Offshore Safety Division who made additional contributions to the project. In particular we wish to acknowledge the input made by S Schofield, I Brearley, and T Norman during the latter stages of the project.

The principal author, JR Spouge, also wishes to acknowledge present and former colleagues, too numerous to list individually, whose assistance has been drawn upon extensively during the preparation of the Guide.
CONTENTS

PART I

1. INTRODUCTION TO THE GUIDE ... 1
 1.1 General Introduction to Offshore QRA ... 1
 1.2 Objectives of the Guide ... 1
 1.3 Structure of the Guide .. 1
 1.4 Nature of the Guidance .. 3
 1.5 Referencing ... 3
 1.6 Definition of Terms ... 3

2. A GENERAL OUTLINE OF QRA .. 3
 2.1 Hazards, Risks and Safety ... 3
 2.2 What is QRA? ... 5
 2.3 The Key Components of QRA .. 6
 2.4 QRA as Part of Risk Management ... 7
 2.5 What is QRA Used For? .. 8
 2.6 How to Set the Scope of a QRA .. 9
 2.7 QRA in the Life of an Installation .. 10
 2.8 Existing Guidance on Offshore QRA ... 11
 2.9 Which Calculation Environment to Use .. 11
 2.10 Strengths and Limitations of QRA .. 12

3. HISTORY OF OFFSHORE QRA .. 15
 3.1 Concept Safety Evaluations .. 15
 3.2 Total Risk Analyses .. 15
 3.3 Developments in the UK Sector .. 15
 3.4 Mobile Platforms ... 16
 3.5 Effects of Piper Alpha ... 16
 3.6 Safety Cases .. 16
 3.7 Risk Management .. 16

4. REGULATORY REQUIREMENTS FOR OFFSHORE QRA .. 18
 4.1 The United Kingdom .. 18
 4.2 Norway ... 19
 4.3 USA .. 21
 4.4 Canada ... 21
 4.5 Australia ... 21
 4.6 Denmark ... 22
 4.7 Netherlands .. 22
 4.8 Indonesia .. 23
 4.9 Malaysia .. 23
 4.10 Brunei .. 23
 4.11 Nigeria .. 23
 4.12 Brazil .. 23
 4.13 Venezuela ... 23
 4.14 Trinidad & Tobago ... 23
 4.15 China ... 24

5. TYPES OF OFFSHORE QRA STUDIES .. 25
 5.1 Fatality Risk Assessment .. 25
 5.2 Concept Safety Evaluation .. 25
 5.3 Total Risk Assessment ... 26
 5.4 Lifetime Risk Assessment ... 27
 5.5 Cullen Forthwith Studies ... 27
 5.6 Fire and Explosion Analysis .. 27
 5.7 Evacuation, Escape and Rescue Analysis .. 28
 5.8 QRAs of Mobile Platforms ... 28
16.13 Strengths and Weaknesses of Process QRA ... 121

17. COLLISIONS ... 122
17.1 Definitions ... 122
17.2 Hazard Review ... 122
17.3 Types of Colliding Vessel .. 122
17.4 Visiting Vessel Collisions .. 122
17.5 Passing Merchant Vessel Collisions .. 123
17.6 Fishing Vessel Collisions .. 123
17.7 Naval Vessel Collisions ... 123
17.8 Offshore Tanker Collisions ... 124
17.9 Collisions Between Fixed and Floating Platforms ... 124
17.10 Collision Consequences .. 124
17.11 Collision Impacts ... 124
17.12 Strengths and Weaknesses of Collision QRA .. 124

18. STRUCTURAL AND MARINE EVENTS .. 126
18.1 Definitions .. 126
18.2 Hazard Review .. 126
18.3 Structural Reliability Analysis .. 126
18.4 Structural Failure of Steel Jacket Platforms ... 127
18.5 Structural Failure of Concrete Platforms .. 127
18.6 Structural Failure of Jack-Ups ... 128
18.7 Earthquakes .. 128
18.8 Structural Failure of Semi-Submersibles ... 128
18.9 Ballast System Failures ... 128
18.10 Structural Failure of Tankers .. 129
18.11 Fires/Explosions on Tankers .. 129
18.12 Dropped Objects ... 129
18.13 Bridge Failures ... 129
18.14 Oil Spills in Offshore Loading and Storage ... 130
18.15 Construction Failures .. 130

19. NON-PROCESS FIRES ... 131
19.1 Definitions .. 131
19.2 Hazard Review .. 131
19.3 Fire Frequencies ... 131
19.4 Fatality Risks .. 131

20. TRANSPORT ACCIDENTS .. 132
20.1 Hazard Review .. 132
20.2 Data Sources ... 132
20.3 Risk Measures Used ... 132
20.4 Helicopter Crash Risks ... 133
20.5 Helicopter Impact Risks .. 133
20.6 Crew Boat Accident Risks .. 133

21. PERSONAL ACCIDENTS ... 134
21.1 Definitions .. 134
21.2 Data Sources ... 134
21.3 Risk Measures Used ... 134
21.4 UK Data .. 135
21.5 Other Data ... 135
21.6 Theoretical Methods .. 135

22. FORMS OF RISK PRESENTATION ... 136
22.1 Risk Measures for Loss of Life ... 136
22.2 Individual Risks ... 136
22.3 Group Risks ... 138
22.4 Other Risk Measures ... 139
22.5 Calculation Methods .. 140
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.6</td>
<td>Time Period Analysed</td>
<td>144</td>
</tr>
<tr>
<td>22.7</td>
<td>Formats for Risk Presentation</td>
<td>144</td>
</tr>
<tr>
<td>23.</td>
<td>RISK RESULTS</td>
<td>146</td>
</tr>
<tr>
<td>23.1</td>
<td>Results for Individual Installations</td>
<td>146</td>
</tr>
<tr>
<td>23.2</td>
<td>Results for Hypothetical Platform</td>
<td>146</td>
</tr>
<tr>
<td>23.3</td>
<td>Results for Generic Platforms</td>
<td>149</td>
</tr>
<tr>
<td>23.4</td>
<td>Results for UK Sector Overall</td>
<td>152</td>
</tr>
<tr>
<td>24.</td>
<td>UNCERTAINTIES</td>
<td>156</td>
</tr>
<tr>
<td>24.1</td>
<td>The Importance of Uncertainty</td>
<td>156</td>
</tr>
<tr>
<td>24.2</td>
<td>Definitions</td>
<td>156</td>
</tr>
<tr>
<td>24.3</td>
<td>Presentation of Uncertainties</td>
<td>157</td>
</tr>
<tr>
<td>24.4</td>
<td>Worst Cases and Best-Estimates</td>
<td>158</td>
</tr>
<tr>
<td>24.5</td>
<td>The Level of Uncertainty in QRAs</td>
<td>159</td>
</tr>
<tr>
<td>24.6</td>
<td>Approaches to Uncertainty Analysis</td>
<td>159</td>
</tr>
<tr>
<td>24.7</td>
<td>Sources of Uncertainty</td>
<td>160</td>
</tr>
<tr>
<td>24.8</td>
<td>Quantification of Uncertainties</td>
<td>161</td>
</tr>
<tr>
<td>24.9</td>
<td>Uses of Uncertainty Analysis</td>
<td>165</td>
</tr>
<tr>
<td>25.</td>
<td>RISK CRITERIA</td>
<td>167</td>
</tr>
<tr>
<td>25.1</td>
<td>QRA in Decision-Making</td>
<td>167</td>
</tr>
<tr>
<td>25.2</td>
<td>Definitions</td>
<td>168</td>
</tr>
<tr>
<td>25.3</td>
<td>Frameworks for Risk Criteria</td>
<td>168</td>
</tr>
<tr>
<td>25.4</td>
<td>Individual Risk Criteria</td>
<td>169</td>
</tr>
<tr>
<td>25.5</td>
<td>Group Risk Criteria</td>
<td>172</td>
</tr>
<tr>
<td>25.6</td>
<td>Impairment Frequency Criteria</td>
<td>174</td>
</tr>
<tr>
<td>25.7</td>
<td>Damage Risk Criteria</td>
<td>176</td>
</tr>
<tr>
<td>25.8</td>
<td>Cost-Benefit Analysis</td>
<td>176</td>
</tr>
<tr>
<td>26.</td>
<td>RISK REDUCTION MEASURES</td>
<td>185</td>
</tr>
<tr>
<td>26.1</td>
<td>How to Use QRA to Identify Risk Reduction Measures</td>
<td>185</td>
</tr>
<tr>
<td>26.2</td>
<td>How to Use QRA to Model Risk Reduction Measures</td>
<td>185</td>
</tr>
<tr>
<td>26.3</td>
<td>Analysis of Concept Selection Options</td>
<td>185</td>
</tr>
<tr>
<td>26.4</td>
<td>Analysis of Fire and Blast Protection Measures</td>
<td>186</td>
</tr>
<tr>
<td>26.5</td>
<td>Analysis of Evacuation Measures</td>
<td>188</td>
</tr>
<tr>
<td>26.6</td>
<td>Analysis of Collision Risk Reduction Measures</td>
<td>188</td>
</tr>
<tr>
<td>27.</td>
<td>SIMULTANEOUS OPERATIONS</td>
<td>190</td>
</tr>
<tr>
<td>27.1</td>
<td>Definition</td>
<td>190</td>
</tr>
<tr>
<td>27.2</td>
<td>The Need for Simultaneous Operations</td>
<td>190</td>
</tr>
<tr>
<td>27.3</td>
<td>Accident Experience</td>
<td>190</td>
</tr>
<tr>
<td>27.4</td>
<td>Legislation</td>
<td>190</td>
</tr>
<tr>
<td>27.5</td>
<td>Hazards of SD&P</td>
<td>191</td>
</tr>
<tr>
<td>27.6</td>
<td>QRA of SD&P</td>
<td>191</td>
</tr>
<tr>
<td>27.7</td>
<td>Comparison of SD&P with Sequential Operations</td>
<td>192</td>
</tr>
<tr>
<td>27.8</td>
<td>Safety Measures for SD&P Operations</td>
<td>192</td>
</tr>
<tr>
<td>27.9</td>
<td>Safety Management for SD&P</td>
<td>193</td>
</tr>
<tr>
<td>28.</td>
<td>SAFETY MANAGEMENT</td>
<td>194</td>
</tr>
<tr>
<td>28.1</td>
<td>The Importance of Safety Management</td>
<td>194</td>
</tr>
<tr>
<td>28.2</td>
<td>Elements of a Safety Management System</td>
<td>194</td>
</tr>
<tr>
<td>28.3</td>
<td>The Effect of Safety Management on Risks</td>
<td>194</td>
</tr>
<tr>
<td>28.4</td>
<td>Including Safety Management in a QRA</td>
<td>195</td>
</tr>
<tr>
<td>28.5</td>
<td>Including the QRA in Safety Management</td>
<td>195</td>
</tr>
<tr>
<td>28.6</td>
<td>Performance Standards</td>
<td>195</td>
</tr>
<tr>
<td>29.</td>
<td>QUALITY MANAGEMENT OF A QRA</td>
<td>197</td>
</tr>
<tr>
<td>29.1</td>
<td>The Need for Quality Management in QRA</td>
<td>197</td>
</tr>
<tr>
<td>29.2</td>
<td>Key Issues in Quality Management of QRAs</td>
<td>197</td>
</tr>
<tr>
<td>29.3</td>
<td>How to Check a QRA</td>
<td>199</td>
</tr>
</tbody>
</table>
29.4 How to Evaluate the Quality of a QRA ... 200

GLOSSARY ... 202

ABBREVIATIONS .. 208

REFERENCES ... 210

PART II

APPENDIX I AN OUTLINE OF OFFSHORE ACTIVITIES
APPENDIX II SOURCES OF OFFSHORE ACCIDENT DATA
APPENDIX III ACCIDENT DESCRIPTIONS
APPENDIX IV HYDROCARBON EVENT CONSEQUENCE MODELLING
APPENDIX V IMPACT CRITERIA
APPENDIX VI EVACUATION, ESCAPE AND RESCUE
APPENDIX VII RISK ANALYSIS OF BLOWOUTS
APPENDIX VIII RISK ANALYSIS OF RISER/PIPELINE LEAKS
APPENDIX IX RISK ANALYSIS OF PROCESS LEAKS
APPENDIX X RISK ANALYSIS OF COLLISIONS
APPENDIX XI RISK ANALYSIS OF STRUCTURAL AND MARINE EVENTS
APPENDIX XII RISK ANALYSIS OF NON-PROCESS FIRES
APPENDIX XIII RISK ANALYSIS OF TRANSPORT ACCIDENTS
APPENDIX XIV RISK ANALYSIS OF PERSONAL ACCIDENTS
APPENDIX XV SAFETY MANAGEMENT SYSTEMS
APPENDIX XVI DIRECTORY OF SOFTWARE FOR OFFSHORE QRA
1. INTRODUCTION TO THE GUIDE

1.1 General Introduction to Offshore QRA

Offshore production of oil and gas involves some of the most ambitious engineering projects of the modern world, and is a prime source of revenue for many companies and countries. It also involves risks of major accidents, which have been demonstrated by disasters such as the explosion and fire on the UK production platform Piper Alpha, the capsizes of the Norwegian accommodation platform Alexander Kielland and the Canadian semi-submersible drilling rig Ocean Ranger, and the sinking of the Norwegian gravity base structure Sleipner A.

Major accidents represent the ultimate, most disastrous way in which an offshore engineering project can go wrong. Accidents cause death, suffering, pollution of the environment and disruption of business. Being so dramatic, they attract attention from the news media and linger in the public memory, causing concern about safety offshore. Are offshore platforms safe enough? Can major accidents be prevented? How should the offshore industry achieve an appropriate balance between the interests of safety and the economics of oil and gas production?

Quantitative risk assessment (QRA) is a technique that can be used to help achieve this balance. In the UK and Norway, the use of risk assessment is a legislative requirement for all new and existing installations, and several other countries are implementing similar regulations. As a result, QRA is now being used world-wide by designers, operators, and consultants in the offshore industry.

QRA is a relatively new technique. It cuts across traditional divisions of engineers such as civil, mechanical, chemical, aeronautical - it applies to all of them and belongs to none. Most of the textbooks on it relate to the fields of chemical and nuclear engineering, and there are no standard reference works on how to perform an offshore risk assessment. Most information and expertise is held by individual operators and consultants, and very little has reached the public domain. The UK and Norwegian regulations state what is required from a risk assessment, but do not say exactly how to do it.

As a result, the pool of expertise in risk assessment is very small. Many workers in the field are only recently acquainted with it. Few have experience in more than one or two applications. Risk assessment remains to a large extent a do-it-yourself activity.

In order to fill this gap, the Centre for Marine and Petroleum Technology (CMPT) has organised a multi-sponsor project to prepare a guide to offshore QRA. The sponsors include offshore operators and regulatory authorities in the UK, Norway, USA and Canada. DNV Technica has been the main contractor for the work.

1.2 Objectives of the Guide

The intention of the guide is to provide an introduction to QRA specifically for the offshore industry. It aims to introduce all the major aspects of the subject and to describe good modern practice in offshore QRA. It includes a selection of data and relatively simple analytical techniques that may be used in performing QRAs, and gives references to more sophisticated databases and computational methods. It also presents some example risk results. It is intended to serve partly as a training manual and partly as a reference book, and should be useful for engineers involved in commissioning, performing and evaluating risk assessments.

1.3 Structure of the Guide

Figure 1.1 illustrates the arrangement of material in the guide.
Figure 1.1 Structure Of The Guide

INTRODUCTION
Introduction to the guide (Section 1)
General outline of QRA (Section 2)
History of offshore QRA (Section 3)
Regulatory requirements (Section 4)
Types of QRA studies (Section 5)
Outline of offshore activities (Appendix I)
Software for QRA (Appendix XVI)

HAZARD IDENTIFICATION
Hazard assessment (Section 6)
Failure case selection (Section 7)
Data sources (Appendix II)
Accident descriptions (Appendix III)

FREQUENCY ANALYSIS
Frequency analysis (Section 8)
Reliability analysis (Section 9)

HYDROCARBON EVENT MODELLING
Consequence modelling (Section 10, Appendix IV)
Impact modelling (Section 11, Appendix V)
Evacuation modelling (Section 12, Appendix VI)
Hydrocarbon event summary (Section 13)

RISK ANALYSIS OF INDIVIDUAL HAZARDS
Blowouts (Section 14, App. VII)
Riser and pipeline leaks (Section 15, App. VIII)
Process leaks (Section 16, App. IX)
Collisions and marine events (Section 17, App. X)
Structural and marine events (Section 18, App. XI)
Non-process fires (Section 19, App. XII)
Transport accidents (Section 20, App. XIII)
Personal accidents (Section 21, App. XIV)

RISK PRESENTATION
Forms of risk presentation (Section 22)
Risk results (Section 23)
Uncertainties (Section 24)

RISK REDUCTION
Risk criteria (Section 25)
Risk reduction measures (Section 26)
Simultaneous operations (Section 27)
Safety management (Section 28, Appendix XV)
Quality management of QRA (Section 29)
Part I of the guide describes the subject as a whole and gives general guidance and example results. It follows the broad structure of a QRA study, divided into the following main areas:

1. Background material (Sections 1-5)
2. Hazard identification (Sections 6-7)
3. Frequency analysis (Sections 8-9)
4. General modelling of hydrocarbon releases (Sections 10-13)
5. Risk analysis of individual hazards (Sections 14-21)
6. Presentation of risks (Sections 22-24)
7. Risk reduction (Sections 25-29)

Part II of the guide includes 16 appendices containing more detailed information that may be useful when conducting an offshore QRA:

- Appendix I gives an introduction to offshore activities suitable for analysts with no prior knowledge of the industry.
- Appendix II outlines the main sources of data on offshore risks.
- Appendix III describes a selection of major offshore accidents.
- Appendices IV, V and VI give details on hydrocarbon release modelling issues covered in Sections 10-13 of Part I.
- Appendices VII to XIV give data on the individual hazards covered in Sections 14-21 of Part I.
- Appendix XV gives a more detailed discussion of safety management systems, which is summarised in Section 28 of Part I.
- Appendix XVI consists of a directory of computer software currently available for offshore QRA.

The information in Part II is necessarily only a small sample, and should if possible be supplemented with more relevant or more up-to-date data.

1.4 Nature of the Guidance

The guide does not attempt to specify a single approach to QRA. As far as possible, it presents a range of approaches from which readers can choose the ones appropriate to their study. Where specific guidance is given, it represents a view on reasonable approaches to QRA, balancing the need for accuracy against the need for economy, or else a judgement of what is typically done. The guidance should not be considered as mandatory, or as recommended by DNV Technica except where stated.

1.5 Referencing

References are given at the end of Part I and at the end of each Appendix.

As far as possible, this guide is based on public-domain sources, and all the references are either openly published or are expected to be published in the near future. In a few cases it references documents that are confidential but widely circulated within the offshore industry.

In many cases there are no public-domain sources for the data needed in a QRA, and therefore Part II of the guide draws extensively on sources that are confidential and cannot be acknowledged in full.

1.6 Definition of Terms

Terms such as ‘hazard’, ‘risk’ and ‘risk assessment’ have been given many different meanings. The definitions which are used in this guide are based on an authoritative multi-disciplinary review by the Royal Society (1983 and 1992), as extended for the chemical process industry (I.Chem.E 1992) and for quality assurance and reliability by ISO (1986) and its national implementations (e.g. BSI 1991). There is by no means universal agreement on the definitions given, but these are reasonably well used and are becoming standard by virtue of being adopted by the above sources.
Definitions of terms used are given at appropriate points in the guide. Definitions of the most commonly used terms and abbreviations are provided in a glossary at the end of Part I.
Risk assessment is the overall process of identifying and analyzing risk, and evaluating how it might be modified to maintain appropriate levels of safety and to satisfy regulatory and corporate criteria. A QRA is a formal and systematic approach to estimating the likelihood and consequences of hazardous events, and expressing the results quantitatively as risk to people, the environment or your business. It also assesses the robustness and validity of quantitative results, by identifying critical assumptions and risk driving elements. You may need to demonstrate acceptable risk levels during the Quantitative Risk Assessment.

Risk assessment is the determination of quantitative or qualitative value of risk related to a concrete situation and a recognized threat (also called hazard). Quantitative risk assessment requires calculations of two components of risk (R): the magnitude of the potential loss (L), and the probability (p) that the loss will occur. The procedure for assessing risk than is discussed in the next section.
The QRA, standing for the quantitative risk assessment, addressed in this publication, is a new technique cutting across the traditional divisions of engineering, applying to all of them. Most of the textbooks addressing this technique are relating to the fields on chemical/nuclear engineering and currently there is no any standard reference volumes that would provide the proper guidance on the offshore risk assessment. The objective of this guide is to give an introduction to the QRA as applied to the offshore industry, aiming to introduce all most important aspects of the QRA and describing Quantitative risk assessment (QRA) is a technique that can be used to help achieve this balance. In the UK and Norway, the use of risk assessment is a legislative requirement for all new and existing installations, and several other countries are implementing similar regulations. As a result, QRA is now being used world-wide by designers, operators, and consultants in the offshore industry. QRA is a relatively new technique. In order to fill this gap, the Centre for Marine and Petroleum Technology (CMPT) has organised a multisponsor project to prepare a guide to offshore QRA. The sponsors include offshore operators and regulatory authorities in the UK, Norway, USA and Canada. DNV Technica has been the main contractor for the work. A Guide to Quantitative Risk Assessment for Offshore Installations. John Spouge DNV Technica. Download (pdf, 3.34 Mb) Donate Read. Risk Assessment in the Offshore Industry. OGP-Human Factors Engineering for Projects. Guidelines for Quantitative Risk Assessment. Fatigue Analyses of Offshore Structures. Download Now. Guidance on what constitutes a suitable and sufficient risk assessment, for the purposes of a safety case demonstration, is provided here. The scope is aimed at fire and explosion risk assessment but the general principles may also be applicable to the assessment of risk from other sources. It is complementary to HSE’s Topic Guidance 3 on fire, explosion and risk assessment. Risk Assessment Data Directory Other recommendations include potential improvements to the HCRD and wider availability of data sources. Data sources should produce a report describing the data (including the number of failures and the underlying population) and have a method of receiving feedback from users. This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy. HSE Books. 2. Offshore
A guide to quantitative risk assessment for offshore installations. Overview of Marine and Offshore Safety, Chapter.

Quantitative risk assessment provides means to conduct system analysis of risk due to hazard activities and evaluation of various risk reducing measures (Spouge, 1999). Risk to an offshore installation may be expressed into the main categories of risks posed to human life, assets, production delay and environment. The likelihood of an event may be expressed either as a frequency (i.e. the rate of events per unit time) or a probability (i.e. the chance of the event occurring in specified circumstances). The consequence is the degree of harm caused by the event (Spouge, 1999). Risk Assessment 2: Quantitative Analysis. Decision Making Tree. Risk Resolution. References. Why Risk Assessment? Risk assessment has become an integral part of the risk management process. In fact, a project cannot be approved for execution unless a thorough assessment of risks has been done. While the methodology remains the same, the types of risks will vary a great deal in terms of seriousness, frequency and impact. Without proper identification of risks, project risks cannot be assessed and reports related to it generated. Hence, by using many techniques like the SWOT Analysis, PESTLE Analysis, Delphi technique, Interviewing, Brainstorming, etc, a major proportion of project risks are identified. A Quantitative Risk Assessment (QRA) is a valuable tool for determining the risk of the use, handling, transport and storage of dangerous substances. QRAs are used to demonstrate the risk caused by the activity and to provide the competent authorities with relevant information to enable decisions on the acceptability of risk related to developments on site, or around the establishment or transport route. If a Quantitative Risk Assessment has to be made as part of a Safety Report, it is not necessary to assess the risks of all installations of an establishment. However, it is important to consider all installations substantially contributing to the risk caused by an establishment.