This Volume is a collective effort involving hundreds of technical specialists. It brings together a wealth of information from worldwide sources to help scientists, engineers, and technicians solve current and long-range problems.

Great care is taken in the compilation and production of this Volume, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM’s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this Volume shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this Volume shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.
Foreword

The inclusion of Volume 5A in the ASM Handbook series marks the first time a publication formally sponsored by an ASM International affiliate society has been incorporated into the series.

The Thermal Spray Society (TSS) published the Handbook of Thermal Spray Technology in 2004 under direction of the TSS Training Committee. In 2011, the TSS decided to update and revise the book at the same time ASM International wanted to expand ASM Handbook, Volume 5, Surface Technology. All involved agreed the quality of the TSS book was appropriate for the ASM Handbook series.

ASM Handbook, Volume 5A, Thermal Spray Technology provides an introduction to modern thermal spray processes including plasma spray, high velocity oxy-fuel, and detonation gun deposition; and a description of coating properties, their wear, corrosion and thermal barrier characteristics. Thermal spray technology helps to sustain our way of life by reducing energy consumption, providing environmental benefits, supporting human comfort, and reducing material waste. Development of more reliable and robust equipment technologies, along with improved particle diagnostic instruments, will help to move the thermal spray process from guesswork to more of a science, giving designers and end users more confidence in the long-term manufacturing capabilities of the thermal spray process. Applications already experiencing such growth include industrial gas turbines, biomedical devices, electronics and semiconductors, automotive, and alternative energy (electrical generation, heating, and transportation).

ASM International is grateful for the work of volunteer editors, authors, and reviewers who dedicated their time and expertise, particularly Robert C. Tucker, Jr. and Mitchell R. Dorfman, whose extensive leadership and knowledge of the thermal spray field have been critical to this project.

ASM International is also thankful to members of the American Welding Society’s C2 Committee on Thermal Spray who served as technical reviewers.

Luc Pouliot
President
ASM Thermal Spray Society

Gernant E. Maurer
President
ASM International

Thomas S. Passek
Managing Director
ASM International
Preface

Thermal spray is a generic term for a group of coating processes used to apply metallic, ceramic, cermet, and some polymeric coatings for a broad range of applications. It is one of the most versatile technologies of the various coating technologies, capable of depositing virtually any material that does not decompose on heating to near or slightly above its melting point or is sufficiently malleable to be deposited at high velocity. Moreover, the coating material can be deposited on most surfaces including metallic, ceramic, many polymeric, and others, without significantly heating, and therefore changing the properties, of that surface. Thermal spray coatings have found applications in most industries, providing economical solutions to a host of wear, corrosion, thermal, and other problems or providing other unique characteristics to a surface.

This ASM Handbook, Volume 5A, is intended to provide basic information on thermal spray technology for engineers and technicians new to the field, as well as to serve as a primary reference for experienced practitioners. It should also be a valuable resource for materials, mechanical, aero, chemical, and other design and operations engineers, as well as others seeking solutions to surface engineering problems such as wear, corrosion, thermal or electrical conduction or insulation, or special surface functions such as lubrication, friction, or catalysis.

This ASM Handbook, Volume 5A, is an extensive revision and updating of the Handbook of Thermal Spray Technology prepared under the direction of the Training Committee of the ASM Thermal Spray Society and published by ASM International in 2004. It is the result of a great deal of time and effort by the TSS member volunteers who served as editors and authors of its divisions, and they are to be highly commended for their commitment and dedication to the project. All of the divisions were peer reviewed by experts in their various fields, and they too are to be commended for their efforts as are the several staff members involved in editing and compiling Volume 5A.

R.C. Tucker, Jr., PhD, FASM, TS HoF
Editor
Policy on Units of Measure

By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d’Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world.

For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi = 1000 psi. The metric tonne (kg \times 10^3) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only.

To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges.

Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches.

Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis.

Conversions and rounding have been done in accordance with IEEE/ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 °F contains three significant digits. In this case, the equivalent temperature would be given as 855 °C; the exact conversion to 854.44 °C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as 961.93 °C or 1763.5 °F. In some instances (especially in tables and data compilations), temperature values in °C and °F are alternatives rather than conversions.

The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm³ rather than kg/m³ as the unit of measure for density (mass per unit volume).

SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity.
Officers and Trustees of ASM International (2012–2013)

Gernant E. Maurer
President
Carpenter Technology Corporation

C. Ravi Ravindran
Vice President
Ryerson University

Christopher C. Berndt
Immediate Past President
Swinburne University of Technology

Thomas Fasick
Managing Director
ASM International

Robert Fulton
Treasurer
Hoeganaes Corporation (Retired)

Iver Anderson
Ames Laboratory

Mitchell Dorfman
Sulzer Metco (US), Inc.

Diana Essoek
Metanark Inc.

James C. Foley
Los Alamos National Laboratory

David U. Furrer
Pratt & Whitney

Jeffrey A. Hawk
National Energy Technology Laboratory

William J. Lenling
Thermal Spray Technologies Inc.

Luc Pouliot
President
Tecnar Automation Limited

John O. Hayden
Vice President
Hayden Corporation

Douglas G. Puerta
Secretary/Treasurer
IMR-KHA-Portland

Charles M. Kay
Immediate Past President
ASB Industries

Mitchell R. Dorfman
ASM Board Liaison
Sulzer Metco (US) Inc.

Iver Anderson
Ames Laboratory

Mitchell Dorfman
Sulzer Metco (US), Inc.

Diana Essoek
Metanark Inc.

James C. Foley
Los Alamos National Laboratory

David U. Furrer
Pratt & Whitney

Jeffrey A. Hawk
National Energy Technology Laboratory

William J. Lenling
Thermal Spray Technologies Inc.

Vilupanur A. Ravi
California State Polytechnic University

Linda S. Schadler
Rensselaer Polytechnic Institute

Student Board Members
Jennifer L. Breidenich
Georgia Institute of Technology
Gregory A. Vetterick
Drexel University
Blake Whitley
The University of Alabama

Members of the ASM Handbook Committee (2012–2013)

Joseph W. Newkirk
Chair 2012–
Member 2005–
Missouri University of Science & Technology

George Vander Voort
Vice Chair 2012–
Member 1997–
Vander Voort Consulting

Craig D. Clauser
Immediate Past Chair Member 2005–
Clauser Engineering Consulting

Jeffrey A. Hawk
Board Liaison and Member
Member 1997–
U.S. Department of Energy

David E. Alman (2011–)
National Energy Technology Laboratory

Scott W. Beckwith (2010–)
BTG Composites Inc.

Rodney R. Boyer (2010–)
Consultant

Narenra B. Dahotre (2012–)
University of North Texas

Craig V. Darragh (1989–)
The Tinken Company (Retired)

Jon L. Dossett (2006–)
Consultant

Alan P. Druschitz (2009–)
Virginia Tech

Donald E. Duvall (2010–)
Engineering Systems Inc.

Gerald S. Frankel (2010–)
Ohio State University

Larry D. Hanke (1994–)
Materials Evaluation and Engineering Inc.

Paul D. Jablonski (2011–)
U.S. Department of Energy

Kent L. Johnson (1999–)
Applied Materials Technology Inc.

Kang N. Lee (2010–)
Rolls Royce Corporation

Brett A. Miller (2011–)
IMR Metallurgical Services

Dale Newbury (2010–)
National Institute of Standards

Toby V. Padfield (2004–)
ZF Sachs Automotive of America

Thomas E. Prucha (2010–)
American Foundry Society

Elwin L. Rooy (2010–)
Elwin Rooy & Associates

Prasan K. Samat (2010–)
North American Hoganas

Roch J. Shipley (2012–)
Professional Analysis Consulting Inc.

Jeffery S. Smith (2009–)
Material Processing Technology

Jaimie S. Tiley (2012–)
US Air Force Research Lab

George E. Totten (2012–)
G.E. Totten & Associates

Michael K. West (2008–)
South Dakota School of Mines

And Technology

Charles V. White (2011–)
Kettering University

Thermal Spray Society Board (2012–2013)

Luc Pouliot
President
Tecnar Automation Limited

John O. Hayden
Vice President
Hayden Corporation

Douglas G. Puerta
Secretary/Treasurer
IMR-KHA-Portland

Charles M. Kay
Immediate Past President
ASB Industries

Mitchell R. Dorfman
ASM Board Liaison
Sulzer Metco (US) Inc.

Linda Schadler
ASM Board Liaison
Rensselaer Polytechnic Institute

Ann Bolcavage
Rolls-Royce Corporation

Masahiro Fukimoto
Toyohashi University of Technology

Aaron C. Hall
Sanda National Labs

Robert A. Miller
Kennametal Stellite

Sanjay Sampath
State University of New York

Arnelle Vardelle
ENSIL, University of Limoges

Robert Vassen
Forschungszentrum Julich GmbH

Dongming Zhu
NASA - Glenn Research Center

Dr. Y.C. Lau
Liaison to the Board

General Electric
Chairs of the ASM Handbook Committee

J.F. Harper
(1923–1926) (Member 1923–1926)

W.J. Merten
(1927–1930) (Member 1923–1933)

L.B. Case
(1931–1933) (Member 1927–1933)

C.H. Herty, Jr.
(1934–1936) (Member 1930–1936)

J.P. Gill
(1937) (Member 1934–1937)

R.L. Dowdell
(1938–1939) (Member 1935–1939)

G.V. Luerssen
(1943–1947) (Member 1942–1947)

J.B. Johnson
(1948–1951) (Member 1944–1951)

E.O. Dixon

N.E. Promisel

R.W.E. Leiter

D.J. Wright
(1964–1965) (Member 1959–1967)

J.D. Graham

W.A. Stadler

G.J. Shubat

R. Ward

G.N. Maniar

M.G.H. Wells

J.L. McCall

L.J. Korb

T.D. Cooper

D.D. Huffman

D.L. Olson

R.J. Austin

W.L. Mankins
(1994–1997) (Member 1989–)

M.M. Gauthier

C.V. Darragh
(1999–2002) (Member 1989–)

Henry E. Fairman

Jeffrey A. Hawk
(2004–2006) (Member 1997–)

Larry D. Hanke
(2006–2008) (Member 1994–)

Kent L. Johnson
(2008–2010) (Member 1999–)

Craig D. Clauser
(2010–2012) (Member 2005–)

Joseph W. Newkirk
(2012–) (Member 2005–)
List of Contributors

David Beneteau
CenterLine Windsor Ltd

Christopher C. Berndt
Swinburne University of Technology

Ann Bolcavage
Rolls-Royce Corp.

Kenneth Couch
Protech Lab Corporation

Daryl E. Crawmer
Thermal Spray Technologies Inc.

Chris Dambra
Sulzer Metco

Bernd Distler
Sulzer Metco

Mitchell R. Dorfman
Sulzer Metco

Tim Eden
Penn State University

Gary Fisher
Alberta Innovates – Technology Futures

Frank Fumelli
Sulzer Metco

Robert Gansert
Advanced Materials and Technology Services Inc.

Larry Grimenstein
Nation Coating Systems Inc.

Karlis Gross
Riga Technical University

John Hayden
Hayden Corporation

Joachim Heberlein
University of Minnesota

Frank Hermanek
Praxair Surface Technologies/TAFA (Retired)

Kendall J. Hollis
Los Alamos National Laboratory

Franz Jansen
Sulzer Metco

Jeganathan Karthikeyan
ASB Industries

Roger Kaufold
Alcoa Surface Science Division

Charles Kay
ASB Industries

Jim Knapp
Praxair Surface Technologies

Y.C. Lau
General Electric

David Lee
Kennametal Stellite

Don Lemen
Praxair Surface Technologies

William Lenling
Thermal Spray Technologies, Inc.

Li Li
Praxair Surface Technologies

Rogerio S. Lima
National Research Council of Canada

Georg Mauer
Forschungszentrum Jülich, Institute of Energy and Climate Research

P. Meyer
Sulzer Metco

Robert Miller
Kennametal Stellite

Noritaka Miyamoto
Toyota Motor Corporation

Irene Nava
Solar Turbines

Andrew Nicoll
Consultant

Shiladitya Paul
University of Limoges

Lech Pawlowski
University of Limoges

Mark Pollack
Boeing Research & Technology

Luc Pouliot
Tecnar

Doug Puerta
IMR Test Labs

Walter Riggs
Siemens

Dana Rucker
Siemens

Krishna Sampath
Chart Industries

Sanjay Sampath
Stony Brook University

Noppakun Sanpo
Swinburne University of Technology

David Sansom
Siemens Energy

Roland Seals
Oak Ridge National Laboratory

Atin Sharma
Sulzer Metco

Jeffrey S. Smith
Material Processing Technology

D. Sporer
Sulzer Metco

Christopher Strock
Pratt Whitney

Robert C. Tucker, Jr.
The Tucker Group

Robert Unger
Polyemt Corp.

Armelle Vardelle
University of Limoges

Robert Vassen
Forschungszentrum Jülch, Institute of Energy and Climate Research

Petri Vuoristo
Tampere University of Technology

Tetsuyoshi Wada
Sulzer Metco (Japan)

James Wang
Swinburne University of Technology

Greg Wuest
Sulzer Metco

Scott Wilson
Sulzer Metco (Switzerland)

Tonya Wolfe
Alberta Innovates – Technology Futures

Zongtao Zhang
Stryker Howmedica Osteonics

Dongming Zhu
NASA Glenn Research Center
# Contents

## Introduction to Thermal Spray Technology and Surface Engineering ................................................................. 1

- Introduction to Thermal Spray Technology  
  * R.C. Tucker, Jr. .............................................. 3  
- Thermal Spray Processes ........................................ 3  
- Microstructural Characteristics of Thermal Spray Coatings ......................................................... 5  
- Materials for Thermal Spray .................................. 5  
- Markets and Applications ....................................... 6  
- Alternative Coating and Thin Film Processes .......... 6  
- Surface Engineering ............................................ 10  
- Wear and Corrosion ........................................... 10  
- Thermal and Thermochemical Surface Modification ................................................................. 14  
- Electrochemical Treatments ................................. 17  
- Chemical Treatments ......................................... 19  
- Chemical Vapor Deposition .................................. 19  
- Physical Vapor Deposition .................................. 22  
- Advanced Chemical and Physical Vapor Deposition ................................................................. 25  
- Thermal Spray Processes ..................................... 25  
- Hardfacing ...................................................... 27  
- Hardfacing ...................................................... 27  
- Comparison of Major Coating Methods ............... 28  

## Thermal Spray Processes and Coatings ......................................................... 31

- Thermal Spray Processes  
  * Daryl E. Crawmer ........................................... 33  
- Thermal Spray versus Other Coating Processes ........ 34  
- Thermal Spray Process Classification .................. 34  
- Processing Characteristics .................................. 34  
- Thermal Spray Processes ..................................... 35  
- Cold Spray Process  
  * Jeganathan Karthikkeyan ................................ 54  
- Cold Spray Equipment and Process Parameters .......... 55  
- Deposition Efficiency and Coating Properties ........ 55  
- Coating Materials and Applications ..................... 56  
- Conclusion ...................................................... 58  
- Coating Structures, Properties, and Materials  
  * Daryl E. Crawmer ........................................... 60  
  * Coating Structures ......................................... 60  
  * Thermal Spray Coating Properties .................... 63  
  * Thermal Spray Materials .................................. 64  
- Process Control and Control Equipment  
  * Daryl E. Crawmer ........................................... 65  
  * Process Parameters ....................................... 65  
  * Material Feed ............................................. 65  
  * Powder Characteristics ................................... 67  
  * Powder Pulsing ............................................ 68  
  * Gas Flow Measurement and Control ..................... 69  
  * Related Measurement Issues ............................. 71  
  * Gas Quality Issues ....................................... 71  
  * Thermal Spray Controls .................................. 72  
  * Plasma Arc Starting Problems ........................... 72  
  * Motion Control ............................................ 73  
  * Water Cooling .............................................. 73  
  * Thermal Spray Plume Sensors ............................ 74  

## Introduction to Coating Design and Processing  
* Daryl E. Crawmer ........................................... 76  
- Advantages and Disadvantages of Thermal Spraying ........ 76  
- Processing Prior to Coating ................................ 77  
- Coating Deposition .......................................... 83  
- Postcoating Processing ..................................... 88  
- Process Modeling ........................................... 89  

## Consumables ................................................. 91

- Feedstock Material Considerations for Thermal Spray  
  * Noppakan Sanpo, James Wang, and Christopher C. Berndt ......................................................... 93  
- Introduction .................................................. 93  
- Material Production Processes ............................ 94  
- Material Categories for Thermally Sprayed Coatings ......................................................... 106  
- Particle Morphology ........................................ 108  
- Particle Classification Methods ........................... 109  
- Feedstock Delivery Systems ................................ 110  
- Quality Control and Feedstock Material Specification ......................................................... 112  
- Health Concerns ............................................. 113  
- Deposition Efficiency ....................................... 113  
- Concluding Remarks .......................................... 114  

## Appendix—Physical and Chemical Phenomena  
* with Liquid Feedstock ........................................ 114  
- Historical Studies of Solution Precursor Plasma Spray Methods ......................................................... 114  
- Historical Studies of Suspension Plasma Spray Methods ......................................................... 115  
- Phenomena Occurring during Suspension Thermal Spraying ......................................................... 116  
- Phenomena Occurring during Solution Thermal Spraying ......................................................... 117  

## Precoating and Postcoating Processing ......................................................... 121

- Precoating Operations  
  * Jim Knapp and Don Lemen ................................ 123  
  * Part Configuration and Coating Location ............. 123  
  * Substrate Metallurgy, Structure, and Thermal History ......................................................... 123  
  * Surface Preparation ........................................ 124  
  * Masking and Fixturing .................................... 128  
  * Stripping of Coatings .................................... 129  
- Postcoating Operations  
  * Jim Knapp and Don Lemen ................................ 130  
  * Surface Treatments ........................................ 130  
  * Internal Treatments ........................................ 132  
  * Inspection .................................................... 133  

## Health and Safety ................................................. 135

- Health and Safety  
  * Daryl E. Crawmer ........................................... 137  
  * Control of Hazards ........................................ 137  
  * Engineered Controls—Spray Booth Design and Operation ......................................................... 137  
  * Personal Protective Equipment and Its Use ........... 138  
  * Other Potential Safety Concerns ........................ 139  
  * Acknowledgment ............................................ 140
Guidelines for the Use of Personal Protective Equipment in Thermal Spraying .......................... 141
Scope and Overview ............................... 141
Related Standards and Documents .......................... 141
Personal Protective Equipment Program—Typical
Responsibilities of Employers, Supervisors, and Workers .......................... 141
Cleaning and Maintenance of Personal Protective Equipment .......................... 142
Eye and Face Protection .............................. 143
Head Protection ...................................... 143
Foot Protection ....................................... 145
Hand Protection ...................................... 145
Respiratory Protection .................................. 146
Hearing Protection ...................................... 147
Training .................................................. 147
Recordkeeping ......................................... 147
Appendix 1—Glove Chart ............................. 148
Appendix 2—Glove Type and Chemical Use .......................... 148
Appendix 3—Job Hazard Analysis Example .......................... 149
Appendix 4—Filter Lenses for Protection against Radiant Energy .......................... 149

Safety Guidelines for Performing Risk Assessments .......................... 151
Referenced Documents ............................... 151
Risk Assessments ....................................... 151
Appendix 1—Some Typical Thermal Spray Risks to Consider When Performing a Risk Assessment .......................... 152
Appendix 2—Typical Engineering Control Procedures That Can Be Used in the Thermal Spray Process .......................... 152
Appendix 3—Typical Administrative Control Procedures That Can Be Used in the Thermal Spray Process .......................... 153
Case Study 1—Risk Assessment of Working in a Confined Space .......................... 153
Case Study 2—Spraying a Bridge with Zinc-Aluminum Arc-Sprayed Wire .......................... 153

Safety Guidelines for the Handling and Use of Gases in Thermal Spraying .......................... 154
Scope ..................................................... 154
Referenced Documents ............................... 154
Thermal Spray Gas Characteristics and Application-Specific Safety Hazards/Precautions .......................... 154
Typical Thermal Spray Gas Plumbing Configurations .......................... 157
Bulk Gas Supplies—Summary of Safe Practice for Installation, Operation, and Maintenance .......................... 158
Compressed Gas Cylinders .................................. 159
Regulators, Flow Meters, and Hoses .......................... 160
Check Valves, Flashback Arrestors, and Excess Flow Valves .......................... 161
Pressure-Relief Valves and Vents .......................... 161
Gas Analyzers/Detectors ............................... 161
Thermal Spray Booth Design Guidelines .......................... 163
Scope ..................................................... 163
Related Standards and Documents .......................... 163
Booth Structure and Sound Suppression .......................... 163
Robotics and Torch/Part Manipulation .......................... 168
Ventilation and Filtration ............................... 170
Piping Guidelines ....................................... 176
Electrical Guidelines .................................... 176
Ergonomics ............................................. 177

Testing and Characterization. .......................... 179
Introduction to Testing and Characterization
Walter Riggs and Dana Rucker .......................... 181
Metallurgical and Materials Nature of Thermal Spray Coatings Compared to Wrought, Forged, and Cast Materials .......................... 181
Testing and Characterization Methods as Response Generators .......................... 185
Testing and Characterization Methods and Development as a Diverse Materials Engineering Opportunity .......................... 186
Metallography and Image Analysis
Walter Riggs and Dana Rucker .......................... 188
Sectioning Techniques ................................. 189
Mounting Materials and Techniques .......................... 190
Grinding ................................................. 194
Polishing .................................................. 200
Recommended Procedures ............................... 204
Image Analysis ........................................... 207
Enchants .................................................. 212

Testing of Coatings
Walter Riggs, Dana Rucker, and Ken Couch .......................... 214
Hardness Testing ........................................ 214
Tensile Adhesion Testing ................................ 215
Electrochemical (Corrosion) Testing .......................... 218
Testing of Thermal Barrier Coatings .......................... 220
Residual-Stress Determination in Thermal Spray Coatings .......................... 222
Nondestructive Testing .................................. 223
Testing the Elastic Behavior of Ceramics .......................... 224
Wear Testing ............................................. 226
Block-on-Ring (ASTM G77) ............................... 228
Testing of Abradable Coatings—Abradability and Erosion Resistance .......................... 232
Hardness as a Guide to Wear Resistance .......................... 233
Powder Testing and Characterization
Walter Riggs ............................................. 238
Particle Size .............................................. 238
Powder and Coating Stoichiometry .......................... 240
Powder Chemistry ........................................ 240

Existing and New Market Opportunities in Thermal Spray Applications .......................... 243
Introduction to Applications for Thermal Spray Processing
Mitchell Dorfman ....................................... 245
Selection of the Optimum Coating for an Application .......................... 245
Selection of the Optimum Material for an Application .......................... 245
Benefits of Thermal Spray Coatings and the Functions They Provide .......................... 246
Application Success Stories ............................... 247

Critical Coding Functions
Corrosion Control for Marine- and Land-Based Infrastructure Applications
Shiladitya Paul ........................................... 248
Coating Types ............................................ 248
TSCs for Corrosion Control in Atmospheric and Immersion Service .......................... 249

Wear-Resistant Coatings
David Lee ............................................... 253
Abrasive Wear .......................................... 253
Erosive Wear ............................................ 254
Adhesive Wear .......................................... 255
Surface Fatigue .......................................... 256

Corrosion and Wear Control for Industrial Applications
Mitchell R. Dorfman ..................................... 257
Noble and Neutral Coatings for Industrial Applications—Understanding Substrate/Coating Compatibility .......................... 257
Processing Industries and Corrosion Control .......................... 258
Ball Valve/Petrochemical Applications .......................... 260

Thermal Spray Coatings for Electrical and Electronic Applications
Atin Sharma ............................................. 262
Thermal Spray Processing .................................. 262
Types of Materials in Electrical and Electronic Applications .......................... 263
Electrical/Electronic Device Applications .......................... 265
Biomedical Coatings Made by Thermal Spraying for Automotive Coatings and Applications

Replacement for Hard Chrome Plating on Aircraft

Thermal Spray Technology Growth in Gas Turbine Applications

Thermal Spray Chromium Carbide Cermet Coating

Thermal Spray Chromium Oxide Coating

Solution-Precipitated Hydroxyapatite Coating

Challenges Facing the Development of Artificial Joints

Substrate Selection

Thermal Spray Hydroxyapatite Coating

Solution-Precipitated Hydroxyapatite Coating

Thermal Spray Chromium Oxide Coating

Thermal Spray Chromium Carbide Cermet Coating

Conclusion and Future Goals

Protective Overlays and Coatings Used in Oil Sands

Application Processes

Overlays and Materials Selection

Future Work

Renewable Energy Applications

Hydro Power

Biomass and Biofuels

Fuel Cells

Nuclear Industry Applications for Thermal Spray

Common Power Plant Applications

Nuclear Fusion Applications

Thermal Spray Applications in the Steel Industry

Steel Manufacturing

Thermal Spray Growth Opportunities in the Steel Industry

The Need for Coatings in the Steel Industry

Thermal Spray Applications in Steel Manufacturing

Conclusions and Future Growth

Thermal Spray Applications in the Paper Production Industry

Additional Applications in Thermal Spray

Atin Sharma

Use of Thermal Spray Polymer Coatings as a Replacement for Paints (Ref 1)

Engraver Rolls

Plate and Blanket Cylinders

Corona Rolls

Draw Rolls

Additional Literature Sources for Thermal Spray

Reference Information

Guide to General Information Sources

R.C. Tucker, Jr.

ASM International and the Thermal Spray Society

Additional Literature Sources for Thermal Spray

Specifications, Standards, and Quality Control

A Brief History of the Development of Thermal Spray Processes and Materials

R.C. Tucker, Jr.

Feedstock Materials

Glossary of Terms

Abbreviations and Acronyms

Index...
Extensive mechanical twinning was observed in high-purity, electron-beam-melted zirconium. To assemble the program, type nasm -f elf hello.asm. If there is any error, you will be prompted about that at this stage. Otherwise an object file of your program, named hello.o will be created. To link the object file and create an executable file named hello, type ld -m elf_i386 -s -o hello hello.o. Execute the program by typing ./hello. If you have done everything correctly, it will display Hello, world! on the screen. TUTORIALS POINT Simply Easy Learning. CHAPTER 4. On behalf of the ASM Handbook Committee, it is a pleasure to introduce this fully revised and updated edition of Volume 7, Powder Metal Technologies and Applications as part of the ASM Handbook series. Since the first publication of Volume 7 in 1984 as part of the 9th Edition Metals Handbook, substantial new methods, technologies, and applications have occurred in powder metallurgy.